INSTYTUT TECHNIKI CIEPLNEJ

im. Bohdana Stefanowskiego

POLITECHNIKA WARSZAWSKA

Analiza wpływu na środowisko poważnej awarii elektrowni jądrowej

GRZEGORZ NIEWIŃSKI ADAM RAJEWSKI

Semina

ITC

INSTYTUT TECHNIKI CIEPLNEJ

im. Bohdana Stefanowskiego

POLITECHNIKA WARSZAWSKA

Projekt badawczy "Technologie wspomagające rozwój bezpiecznej energejyki jądrowej"

Zadanie badawcze 9: "Opracowanie metod i wykonanie ar die zzpieczeństwa w reaktorach jądrowych przy zaburzeniach w odbiorze ciepła i w ynk h ciężkich awarii"

Seminary

ITC

SAR OTA

PLAN PREZENTACJI

- 1. Wstęp
- 2. Modele matematyczne stosowane do opisu rozprzestrzeniania się zanieczyszczeń w atmosferze
- 3. Kod KOD MACCS2/WinMACCS, opis modelu obliczeniowego:
 - Dane meteo
 - Opis uwolnienia
- 4. Obliczenia dawek
- 5. Obliczenia skutków awarii
- 6. Podsumowanie

PROJA

WSTĘP

Jednym z kluczewych zagadnień na etapie przygotowań do budowy elektrowni jądrowej jest ocena wpływu instalacji na środowisko, w tym ocena potencjalnych i prawdopodobnych skutków wystąpienia poważnych sytuacji awaryjnych.

Jednym z najważniejszych aspektów tej oceny jest prognozowanie wpływu możliwych uwolnień substancji radioaktywnych na otoczenie elektrowni, w szczególności na zamieszkujących to otoczenie ludzi. Do wykonania tego rodzaju prognoz i ocen wykorzystuje się modele matematyczne rozchodzenia się w atmosferze substancji promieniotwórczych.

W połączeniu z wiedzą na temat ilości i typu substancji, które mogą zostać uwolnione z instalacji, aktywności danych substancji oraz geografii regionu, w którym znajduje się elektrownia, modele te umożliwiają dokonanie kompleksowej oceny wpływu zdarzenia awaryjnego na ludzi i przyrodę zarówno w krótkim jak i długim terminie.

PLAN PREZENTACJI

NOTOCK

WAR

RSITY

IKA W

10d

MODEL GAUSSA

Dla większości modeli rozprzestrzeniania zanieczyszczeń podstawę stanowi równanie turbulencyjnej dyfuzji. Jest ono różniczkową formą zasady zachowania masy:

$\frac{\partial C}{\partial t} = -V \quad \nabla C + \nabla F e + Q + R$

Gdzie :

C- stężenie zanieczyszczenia [kg/m³],

t- czas [s],

V=[u, v, w] - wektor prędkości wiatru [m/s],

Fe- turbulencyjny strumień masy zanieczyszczeń [kg/(m2s)]

Q – wydajność emitora [kg/(m³s)],

R – sucha i mokra depozycja, oraz przemiany chemiczne zanieczyszczenia [kg/(m³s)];

MODEL GAUSSA

Najprostszy model smugi jednorodnej prowadzi do uzyskania równania Paquilla, które określa stężenie C badanej substancji w punkcie przestrzeni (x, y, z)

C – stężenie rozważanej substancji; Q₀ – natężenie emisji ze źródła; H – wysokość źródła; u – prędkość wiatru: współczynniki oy oraz oz (odpowiadające odchyleniu standardowemu rozkładu Gaussa) wyrażane są równaniem: $\sigma_v^2 = \frac{2K_v^0 x}{r} \qquad \sigma_z^2 = \frac{2K_z^0 x}{r}$

MODEL GAUSSA

W praktyce wartości oy oraz oz można otrzymać przy użyciu zależności empirycznych dobranych odpowiednio do klasy stabilności atmosfery.

0

\tilde{v}_{V}	<u></u>	a	x^b
2//	\Rightarrow		

$$raz \quad \sigma_y = cx^d + cx^d$$

$\sigma_y =$	cx^d	╋	f
--------------	--------	---	---

Prędkość	Chizic	ń, nasłoneczni	enie	Noc, zach	nmurzenie
wiatru na powierzchni ziemi [m/s]	silne	średnie	małe	Całkowite lub ≥ 4/8	≤ 3/8
2	А	A B	В	E-F	F
2-3	A-B	В	/ 🥎 C	E	F
3-5	В	B-C	C	D	E
5-6	С	C-D	i i	D	D
>6	С	D	D	D	D
A - bardzo nie B - umiarkowa C - lekko nies D - neutralne E - lekko stab F - warunki st	estabilne waru anie niestabiln tabilne warunł warunki ilne warunki abilne lub baro	nki e warunki ki dzo stabilne	~0		
	\land		_		

MODEL GAUSSA

MODEL EULERA

takim modelu następstwo poruszających się cząsteczek powietrza jest czasie t, jest pi≊edstawione w każdym punkcie badanego obszaru, w nieruchomym względem powierzchni terenu układzie współrzędnych. W widziane przez nieruchornego obserwatora jako przenoszone przez W modelu Eulera pole prędkości V(r, t) zmienne w przestrzeni r[x, y, z] i wiatr. Metoda Eulera jest oparta na wykorzystaniu zasady zachowania masy 50 substancji zanieczyszczającej o gęstości e.

$$\frac{\partial p}{\partial t} = -V \cdot \nabla p - \nabla (D\nabla p) + S$$

MODEL LAGRANGE'A

samymi cząsteczkami powietrza w zadanym okresie czasu. Wtedy współrzędnych. W tej metodzie obserwator porusza się wraz z powietrzem z pręckością V i utrzymuje w ten sposób kontakt z tymi Model Lagrange'a polega na wprowadzeniu ruchomego układu pochodna po czasie

 $\frac{d}{dt} = \frac{\partial}{\partial t} + \nabla \cdot \nabla$

A równanie przyjmuje postać

 $\frac{d\rho}{dt} = \nabla (D\nabla\rho) + S$

sarwut

KOD MACCS2/WINMACCS

- Obliczenia wpływu awarii elektrowni jądrowej dokonano z wykorzystaniem kodu WINMACCS.
- Możliwe obliczeniowe i symulacje jakie można wykonać z wykorzystaniem kodu MACCS2/ WINMACCS
- •transport oraz osadzanie się zanieczyszczeń w środowisku w zależności od warunków meteorologicznych,
- •obliczenia krótko- i długoterminowych dawek oraz skutków zdrowotnych ludności (deterministycznych i stochastycznych) zamieszkałej w okolicach elektrowni,
- •ocena przeprowadzania działań zmniejszających skutki awarii,
- •ocena skutków ekonomicznych awarii.

ITC OPIS MODELU OBLICZENIOWEGO

Konfiguracja i lokalizacja elektrowni:

•Pojedynczy bloku z reaktorem typu AREVA EPR

•W chwili obecnej rozważane są trzy możliwe lokalizacje pierwszej polskiej elektrowni jądrowej:

- Choczewo, gmina Choczewo, województwo pomorskie,
- Żarnowiec, gminy Krokowa i Gniewino (rejon budowy oryginalnej

EJ Żarnowiec), województwo pornorskie,

Gąski, gmina Mielno, województwo zachodniopomorskie.

OPIS MODELU OBLICZENIOWEGO-DANE METEO

W celu dokonania oceny wpływu awarii elektrowni jądrowej na środowisko niezbędne jest zebranie danych meteorologicznych panujących w wybranej lokalizacji. Dane zostały uzyskane z Instytutu Meteorologii i Gospodarki Wodnej ze stacji meteorologicznych zlokalizowanych w najbiiższym sąsiedztwie Elektrowni Jądrowej, pochodzą z roku 2013. i były rejestrowane z częstotliwością trzygodzinową i sześciogodzinową oraz uśrednianie dobowo

2 72 20 7 A

OPIS MODELU OBLICZENIOWEGO-DANE METEO

- kierunek i prędkość wiatru: (Gdynia, Hel, Łeba, Lębork)
- temperatura powietrza (Gdynia, Hel, Łeba, Lębork)
- opady (Gdynia, Hei, Łeba, Lębork, Wejherowo, Wierzchucino)
- ciśnienie atmosferyczne (Hel, Łeba)

OPIS MODELU OBLICZENIOWEGO -DANE METEO

kierunek i prędkość wiatru

ITC

temperatura powietrza

OPIS MODELU OBLICZENIOWEGO -DANE METEO

OPIS MODELU OBLICZENIOWEGO – SIATKA PRZESTRZENNA

Narodowe Centrum Badań i Rozwoju

ITC

Nr strefy	Promień strefy [km]	Powierzchnia strefy [km²]	Powierzchnia sektora w strefie [km²]
1	0.5	0.79	0.05
2	1.0	2.36	0.15
223	5.0	75.40	4.71
4//4	10.0	235.62	14.73
5(//	15.0	392.70	24.54
6 <	20.0	549.78	34.36
7	30.0	1570.80	98.17
8	40.0) 2199.11	137.44
9	50.0	2827.43	176.71

SO_{7SI}

OPIS MODELU OBLICZENIOWEGO – ROZMIESZCZENIE LUDNOŚC

Dla poszczególnych sektorów konieczne było oszacowanie liczby ludności. Szacowania dokonano w oparciu o:
dane Głównego Urzędu Statystycznego
dane lokalnych jednostek samorządu terytorialnego.
Całkowita liczba ludności w promieniu 50 km od elektrowni przyjęta do obliczeń to 830 560.

	0-0.5 km	0.5-1 km	1-5 km	5-10 km	10-15 km [《]	45-20 Km	20-30 km	30-40 km	40-50 km
Ν	0	0	0	780	0	Q.) 0	0	0
NNE	0	0	0	270	190	0	0	0	0
NE	0	0	210	3890	1850	530	0/	0	0
ENE	0	0	60	1140	580	4290	8460	0	0
E	0	0	60	290	2230	3120	18950		0
ESE	0	0	380	750	1940	3160	11020	2750	4030
SE	0	0	160	60	580	22180	78530	2258.40	45450
SSE	0	0	0	240	4360	37100	3480	12750	45730
S	0	0	60	1020	2340	5580	10380	11530	26370
SSW	0	0	240	1050	500	1180	5920	7030	16930
SW	0	0	980	980	350	1180	5040	40340	5700
WSW	0	0	260	960	460	690	3870	7330	4780
W	0	0	220	480	2060	1250	2280	6270	710
WNW	0	0	100	520	270	460	0	0	0
NW	0	0	0	1580	300	0	0	0	0
NNW	0	0	260	0	0	0	0	0	0

OPIS MODELU OBLICZENIOWEGO –

KONFIGURACJA RDZENIA

Wszystkie występujące w obliczeniach izotopy promieniotwórcze łączone są w klasy. Podstawą grupowania izotopów są ich podobne własności cremiczne.

Nr	Nazwa grupy	Pierwiestki
1	Gazy szlachetne	Kr, Xe
2	Cez	Cs, Rb
3	Stront	Ba, Sr-90
4	Jod	1
5	Tellur	Те
6	Ruten	Rb, Rh, Ru
7	Metale	Co, Mo, Nb, Tc
8	Cer	Ce, Np, Pu, Zr,
9	Lantan	Cm, La, Nd, Pr, Y

W tabeli obok zamieszczono skład izotopowy rdzenia reaktora EPR wg. danych amerykańskich

izotop	Aktywność [Bq]	grupa	izotop	Aktywność [Bq]	grupa	izotop	Aktywność [Bq]	grupa
Kr-83m	7.25E+17	1	Br-83	7.25E+17	4	Ce-141	8.29E+18	8
Kr-85m	1.67E+18	1	Br-84	1.34E+18	4	Ce-143	8.44E+18	8
Kr-85	7.77E+16	1	Br-85	1.65E+18	4	Ce-144	2.59E+18	8
Kr-87	3.34E+18	1	I-129	3.08E+11	4	Pu-238	5.40E+16	8
Kr-88	4.74E+18	1	I-130	4.88E+17	4	Pu-239	2.27E+15	8
Kr-89	5.96E+18	1	I-131	5.14E+18	4	Pu-240	5.18E+15	8
Xe-131m	5.70E+16	1	I-132	7.44E+18	4	Pu-241	9.36E+17	8
Xe-133m	3.30E+17	1	I-133	1.07E+19	4	Np-239	1.41E+20	8
Xe-133	1.07E+19	1	I-134	1.18E+19	4	Y-90	6.62E+17	9
Xe-135m	2.03E+18	1	I-135	9.95E+18	4	Y-91m	4.44E+18	9
Xerran	3.43E+18	1	Sb-125	1.05E+17	5	Y-91	7.25E+18	9
ke-157 9	9.32E+18	1	Sb-127	6.66E+17	5	Y-92	7.92E+18	9
Xe-158	9.07E+18	1	Sb-129	1.79E+18	5	Y-93	8.66E+18	9
Rb-86m	2.03E+io	2	Te-127m	8.99E+16	5	Zr-95	8.47E+18	9
Rb-86	2.15F 16	2	Te-127	6.62E+17	5	Zr-97	8.66E+18	9
Rb-88	4.77E+√8	2	Te-129m	2.62E+17	5	Nb-95	8.47E+18	9
Rb-89	6.18E+18	2	Te-125	1.77E+18	5	Ag-110m	8.95E+16	9
Cs-134	2.40E+18	2	Te-131m	7.55E+17	5	Ag-110	2.65E+18	9
Cs-136	5.96E+17	2	Te-13	4 59E+18	5	La-140	9.40E+18	9
Cs-137	9.14E+17	2	Te-132	7.335+18	5	La-141	8.92E+18	9
Cs-138	9.95E+18	2	Te-134	9.25/2+18	5	La-142	8.70E+18	9
Sr-89	5.96E+18	3	Ru-103	8.95E+18	6	Pr-143	8.36E+18	9
Sr-90	6.25E+17	3	Ru-105	7.25E+18	6	Pr-144	6.36E+18	9
Sr-91	7.66E+18	3	Ru-106	5.29E+18	6	Nd-147	3.49E+18	9
Sr-92	7.92E+18	3	Rh-103m	8.07E+18	6	Am-241	1.07E+15	9
Ba-137m	8.66E+17	3	Rh-105	6.48E+18	6	Cm-242	4.85E+17	9
Ba-139	9.69E+18	3	Rh-106	5.85E+18	6	Cm-244	2.57E+17	9
Ba-140	9.32E+18	3	Mo-99	9.58E+18	7			
			Tc-99m	8.40E+18	7			

OPIS MODELU OBLICZENIOWEGO – MODEL TRANSPORTU

Do obliczeń rozprzestrzeniania się substancji radioaktywnych wykorzystany został model transportu Gaussa, który bazuje na parametrach σy i σz . Wielkości te mogą być określone poprzez funkcje potęgowe postaci $\sigma = ax^b$ lub poprzez zadanie wartości w tablicy i zależne są od klasy stabilności pogody.

Klasa	σ, =	axy	σ ₇ =	CX ^d
stabilnoś	а	t b	С	d
ci				
1 (A)	0.7507	0.866	0.0361	1.277
2 (B)	0.7507	0.866	G.0361	1.277
3 (C)	0.4063	0.865	0.2036	0 859
4 (D)	0.2779	0.881	0.2636 🗸	0.751
5 (E)	0.2158	0.866	0.2463	0.619
6 (F)	0.2158	0.866	0.2463	0.619

OPIS MODELU OBLICZENIOWEGO – MODEL UWOLNIENIA

Model uwolnienia substancji promieniotwórczej z obudowy bezpieczeństwa reaktora do otoczenia wymaga podania szeregu dodatkowych danych takich jak:

- czas i długość procesu uwalniania,
- ilość substancji jaka wydostała się do otoczenia,
- miejsce rozszczelnienia,
- energia wewnętrzna lub strumień j gestość uwalniających się gazów i aerozoli

oraz innych definiujących chmurę radioaktywną oraz punkty obliczeń.

ROJA

OPIS MODELU OBLICZENIOWEGO – MODEL UWOLNIENIA

W celu określenia skutków awarii elektrowni jądrowej w pracy przeanalizowane dwa modele uwolnienia:

wariant RC802a*wariant RC504*

*Hinkley Point C Pre-Construction Safety Report 2012. NNB Generation Company Ltd., marzec 2013

R TR ROTA

OPIS MODELU OBLICZENIOWEGO – MODEL

UWOLNIENIA

wariant RC802a*

•awaria typu LOCA, bez uwzględnienia usuwania produktów rozszczepienia ani toh osadzenia wewnątrz budynków gospodarki paliwowej.

•Odkrycie rdzenia reaktora 23400 sek. od zaistnienia awarii.

•Wydostanie się materiału radioaktywnego do atmosfery - 28080 sek.

•Źródłem powstałego skażenia będzie rozszczelnienie obudowy bezpieczeństwa na wysokości 10 m.

•Cały materiał uwolniony zostanie w czasie 11 160 sekund i w postaci jednego strumienia.

•Prawdopodobieństwo zaistnienia takiej awarii szacowane jest na poziomie 3,70E-09 na reaktor na rok.

Strumień ciepła uwalniany wraz z materiałem z obudowy bezpieczeństwa wynosi 5.01E+08 J/s,

Nr grup	Nazwa grupy	uwolnienie
1	Cazy szlachetne	81.8%
2	Cez	17.80%
3	Stront	2.36%
4	Jod	17.80%
5	Tellur	13.50%
6	Ruten	7.58%
7	Metale	7.58%
8	Cer	0.37%
g	Lantan	0 0907%

OPIS MODELU OBLICZENIOWEGO – MODEL UWOLNIENIA

wariant RC504
Typu (Late Containment Failure) rozszczelnienie obudowy bezpieczeństwa wywołane pęknięciem po schłodzeniu zniszczonego rdzenia, bez kontaktu pomiędzy stopionym rdzeniem a konstrukcjami betonowymi, z zalewaniem zniszczonego rdzenia i bez zraszania obudowy bezpieczeństwa
Odkrycie rdzenia reaktora 23400 sek od zaistnienia awarii.
Wydostanie się materiału radioaktywnego do atmosfery – 85 h.
Źródłem powstałego skażenia będzie rozszczelnienie obudowy bezpieczeństwa na wysokości 35.7 m.
Cały materiał uwolniony zostanie w czasie 40 h i w postaci jednego

strumienia.

•Prawdopodobieństwo zaistnienia takiej awarii szacowane jest na poziomie 1.28E-07 na reaktor na rok.

•Strumień ciepła uwalniany wraz z materiałem z obudowy bezpieczeństwa wynosi 7.1E+07 J/s.

wariant RC504

OPIS MODELU OBLICZENIOWEGO – MODEL UWOLNIENIA

•Ze względu na ograniczenia symulacji czasu trwania awarii jakie występują w programie MASSC należało przyśpieszyć czas wydostanie się materiału radioaktywnego do 10h i skrócono czas wydostawania się materiału o połowę przy niezmienionym całkowitym strumieniu uwolnionego materiału.

1	Gazy szlachetne Cez	100%	
2	Cez	0.24000/	
2		0.0408%	
3	Stront	0,0024%	
4	Jod	0,0408%	
5	Tellur	5,12E-04%	
6	Ruten	4,43E-04%	
7	Metale	4,43E-04%	20
8	Cer	7,32E-05%	
9	Lantan	2,83E-05%	

OPIS MODELU OBLICZENIOWEGO – MODEL OSADZANIA

Model osadzania (deposition) materiału promieniotwórczego uwzględnia mokre i suche osadzanie.

Model **mokrego osadzania** zakłada, że część izotopów radioaktywnych na skutek padającego deszczu będzie wytrącać się z radioaktywnej chmury i osadzać na powierzchni ziemi.

$$\frac{Q}{Q_0} = \exp(\alpha I^b t)$$

gdzie

- I intensywność opadów
- t czas opadów
- a, b współczynniki funkcji wymywania.

2 20 7 A

OPIS MODELU OBLICZENIOWEGO – MODEL OSADZANIA

Suche osadzanie modelowane jest przy pomocy metody zubażania źródła Chamberlaina skorygowanej w sposób pozwalający na zadanie rozkładu rozmiaru częstek oraz ograniczenie ekspansji pionowej. Proces osadzania substancji na ziemi opisywany jest jako iloczyn stężenia substancji w powietrzu na poziomie ziemi oraz prędkość osadzania suchego dla tego materiału

$$\frac{2}{v_0} = \exp\left(\frac{v_d t}{\sqrt{\frac{\pi}{2}}\sigma_z^{[i0]}\frac{1}{F}}\right) \qquad F' = \sqrt{\frac{\pi}{2}}\sigma_z \frac{1}{F}$$

gdzie

 v_d – prędkość opadania, t – czas opadów, σ_z - standardowe odchylenie pionowego rozkładu koncentracji materiału, F- sumą wszystkich wykładniczych członów zawierających oz przy wyliczaniu koncentracji zanieczyszczeń na poziomie ziemi

$$\mathbf{F} = \left[\exp\left\{\frac{\mathbf{H}^{2}}{2\sigma_{z}^{2}}\right\} + \exp\left\{-\frac{(\mathbf{H} + 2n\mathbf{L})^{2}}{\varepsilon_{z}^{2}}\right\} + \exp\left\{-\frac{(\mathbf{H} + 2n\mathbf{L})^{2}}{2\sigma_{z}^{2}}\right\} \right]$$

Obliczenia Dawek

Obliczenia dawek promieniowania jakie otrzymają ludzie bezpośrednio awarii elektrowni od natychmiastowych/wczesnych ekspozycji DO prowadzi się od pięciu źródeł: •bezpośrednia zewnętrzna ekspozycja od izotopów radioaktywnych znajdujących się w chmurze (Coudshine), •ekspozycja wewnętrzna na skutek oddychania od izotopów radioaktywnych pochodzących z chmury (cloud inhalation), ekspozycja wewnętrzna na skutek oddychania materiałem zawieszonym (resuspension inhalation), •ekspozycja zewnętrzna na skutek promienicwania od materiału, który osiadł na powierzchni ziemi (groundshine), •ekspozycja zewnętrzna od materiału który osiadł na skórze (skin deposition).

Obliczenia Dawek

Obliczenia otrzymanych dawek prowadzi się w celu określenia dwóch rodzajów skutków:

- wczesnych zachorowań i zgonów,
- wystąpienia chorób nowotworowych w długim okresie po awarii.
- W ogólnym przypadku wielkość dawki jaką mogą otrzymać ludzie przebywający na skażonym obszarze wynika z:
- stężenia materiału promieniotworczego,
- współczynników konwersji dawki,
- czasu narażenia ,
- współczynników osłabiania.

Rzeczywiste wielkości dawek jakie otrzymają okoliczni mieszkańcy silnie uzależnione są od działań jakie zostaną podjęte na skutek akcji ratowniczych (tj. podanie specjalnych leków, koniecznosć pozostania w domach lub innych miejscach służących za schronienie czy też ewakuacja z zagrożonych terenów)

Obliczenia Dawek

Obliczenia Dawek od izotopów radioaktywnych znajdujących się w chmurze

Oszacowanie dawki oirzymanej na skutek promieniowania chmury można dokonać za pomocą następującej zależności [5]:

$$DC_k = \left(\sum_i AC_i^c \cdot DFC_{\infty ik}\right) C \cdot F \cdot SFC$$

Gdzie

AC^ci – stężenie materiału radioaktywnego w powietrzu na linii wiatru DFCæik – współczynnik konwersji [Sv m3/ Bq s]

- C współczynnik korekcji dla obszarów nie leżących na linii wiatru
- F stosunek czasu ekspozycji do czasu przejścia chmury przez dany obszar
- SFC współczynnik osłabiania promieniowania

Obliczenia Dawek

Obliczenie dawek od izotopów radioaktywnych, które osiadły na powierzchni ziemi

uzyskuje się jako sumę dawek uzyskanych w czasie przebywania w danym obszarze w czasie występowania w nim chmury oraz w czasie gdy chmura opuściła obszar:

$$DG_{k}^{1} = GDR_{k}(t_{o}) \cdot \int_{t_{1}}^{t_{2}} \frac{(t - t_{e})}{(t_{0} - t_{e})} dt$$
$$DG_{k}^{2} = D2 \cdot \left[\frac{e^{-\lambda_{e}(t_{1} - t_{0})} - e^{-\lambda_{e}(t_{2} - t_{0})}}{1 - e^{-\lambda_{e}T2}} \right] J$$
$$\cdot SFG$$

Gdzie

DG¹k – dawka otrzymana na organ k od promieniowania izotopów osiadłych na powierzchni ziemi czasie przejścia chmury.

DG²k – dawka otrzymana na organ k od promieniowania izotopów osiadłych na powierzymania w cząsie przebywania na obszarze który opuściła już chmuraterem

Obliczenia Dawek

- te, to czas wejścia i wyjścia chmury z rozważanego obszaru
- t1, t2 początek koniec czasu przebywania ludzi w danym obszarze

GDRk(to) – współczynnik dawki na organ k od promieniowania izotopów osiadłych na powietzchni ziemi (Sv). Wartość uzależniona od koncentracji materiału promieniotwórczego na powierzchni ziemi, oraz od współczynników osłabiania promieniowania i korekcji położenia.

 $\lambda e - efektywna stała rozpadu$

D2 – tygodniowa dawka promieniowania od izotopów osiadłych na powierzchni ziemi

- T2 czas jednego tygodnia
- SFG współczynnik osłabiania promieniowania
- J współczynnik korekcji dla obszarów nieleżących na linii wiatru

Obliczenia Dawek

Obliczenie dawek uzyskanych na skutek oddychania

Oszacowanie dawki otrzymanej na organ k na skutek oddychania powietrzem z radioaktywnej chmury można dokonać na podstawie poniższej zależności:

$$DI_{k} = \left(\sum_{i} AC_{i} \cdot DFI_{ik}\right) BR \cdot F \cdot J \cdot SFI$$

Gdzie

ACi – koncentracja materiału radioaktywnego w powietrzu na poziomie ziemi (Bq s/m3)

DFIi k – współczynnik konwersji dawki powstałej w wyniku oddychania (Sv/Bq) na organ k

- BR szybkość oddychania (m3/s)
- SFI współczynnik osłabiania promieniowania
- J współczynnik korekcji dla obszarów nie leżących na linii wiatru

F – stosunek czasu ekspozycji do czasu przejścia chmury przez dany

obszar

Obliczenia Dawek

Obliczenie dawek uzyskanych na skutek oddychania

Oszacowanie dawki otrzymanej na organ k na skutek oddychania powietrzem z radioaktywnej chmury można dokonać na podstawie poniższej zależności:

$$DI_{k} = \left(\sum_{i} AC_{i} \cdot DFI_{ik}\right) BR \cdot F \cdot J \cdot SFI$$

Gdzie

ACi – koncentracja materiału radioaktywnego w powietrzu na poziomie ziemi (Bq s/m3)

DFIi k – współczynnik konwersji dawki powstałej w wyniku oddychania (Sv/Bq) na organ k

- BR szybkość oddychania (m3/s)
- SFI współczynnik osłabiania promieniowania
- J współczynnik korekcji dla obszarów nie leżących na linii wiatru

F – stosunek czasu ekspozycji do czasu przejścia chmury przez dany

obszar

Obliczenia Dawek

Obliczenie cawek uzyskanych na skutek oddychania radioaktywnym pyłem zawieszonym

Oszacowanie dawki orczymanej na organ k na skutek oddychania radioaktywnym pyłem zawieszonym można dokonać na podstawie poniższej zależności:

$$DI_{k} = \left(\sum_{i} GC_{i} \cdot DF_{i,k}\right) BR \cdot J \cdot RF \cdot SFI$$

Gdzie

GCi- koncentracja materiału radioaktywnego osiadłego na powierzchni ziemi po opuszczeniu chmury rozważanego obszaru (Bq/m2)

DFIi k – współczynnik konwersji dawki powstałej na skutek oddychania (Sv/Bq) na organ k

- BR szybkość oddychania (m3/s)
- SFG współczynnik osłabiania promieniowania
- J współczynnik korekcji dla obszarów nie leżących na linii wiatru
- F współczynnik tworzenia zawiesiny (s/m)

Obliczenia Dawek

Oszacowanie dawki otrzymanej na skórę na skutek osiadania materiału radioaktywnego na skórze można dokonać na podstawie poniższej zależności:

$$DS = \left(\sum_{i} AC_{i} \cdot V_{d} \cdot DFS_{i}\right) J \cdot F \cdot SFS$$

Gdzie

ACi- koncentracja materiału radioaktywnego w powietrzu na poziomie ziemi (Bq s/m3)

Vd – prędkość osiadania materiału promieniotwórczego na skórze (m/s) DFSi – współczynnik konwersji dawki powstałej na skutek osiadania materiału promieniotwórczego na skórze (Sv m2/Bq)

SFS – współczynnik osłabiania promieniowania

J – współczynnik korekcji dla obszarów nie leżących na linii wiatru

F – stosunek czasu ekspozycji do czasu przejścia chmury przez dany obszar

Wydostanie się materiału promieniotwórczego do atmosfery podczas awarii elektrowni jądrowej prowadzi do narażenia okolicznej ludności na szkodliwe działanie promieniowania jonizującego.

W przypadku gdy wysokie dawki otrzymane są w krótkim okresie czasu może to doprowadzić do wystąpienia wczesnych urazów, zachorowań lub zgonów wśród narażonej populacji.

Osoby, które przeżyły wysokie dawki, w późniejszym okresie mogą zachorować na nowotwory prowadzące w skrajnym przypadku do śmierci.

Niskie lub średnie dawki bardzo rzadko prowadzą do bezpośrednich zachorowalności lub śmierci, natomiast mogą powodować choroby nowotworowe w późniejszym okresie.

OBLICZENIA WCZESNYCH SKUTKÓW AWARII

Wczesne zachorowania i zgony (skutki deterministyczne)

Wczesne skutki (zachorowania lub zgonów) wyliczane są jak iloczyn indywidualnego ryzyka wczesnego skutku i ilości populacji, która uzyskała zbliżoną dawkę powodującą takie zagrożenie.

$$N_k = r_k \cdot f_k \cdot P$$

Gdzie

- P całkowita napromieniowana populacja
- f_k udział populacji, która jest podatna na ryzyko wystąpienia skutku,
- r_k ryzyko wystąpienia danego skutku.

OBLICZENIA WCZESNYCH SKUTKÓW AWARII

Indywidualne ryzyko wystąpienia wczesnych zgonów można obliczyć z poniższego równania:

$$\Rightarrow 1 - e^{-\sum_k \ln 2 \left(\frac{D}{aLD50}\right)^{bLD50}}$$

D – uzyskana dawka na organ k

aLD50 i bLD50 – współczynniki równania ryzyka. (aLD50 – dawka śmiertelna na dany organ)

Jeżeli dawka uzyskana na rozważany organ jest mniejsza niż dawka progowa to ryzyko wystąpienia skutku jest równe zero.

Organ	aLD50 (Sv)	bLD50	Wartosé progowa (Sv)) 7 a
czerwony szpik kostny	5.6	6.1	2.32	
płuca	23.5	9.6	13.6	
żołądek	12.1	9.3	6.5	

OBLICZENIA WCZESNYCH SKUTKÓW AWARII

W przypadku obliczeń wczesnych zachorowań, indywidualne ryzyko wystąpienia danego skutku oblicza się z analogicznej zależności jak w przypadku zgonów. Jedyną różnicą jest brak sumowania obrażeń od więcej niż jednego narządu. $r = 1 - a^{-1n2} \left(\frac{D}{dLD50}\right)^{bLD50}$

- —		17.		
choroba	organ	Dawka progowa (Sv)	aD50 (Sv)	bD50
wymioty	żołądek	0.5	2	3
biegunka	żołądek	1	3-7	2.5
zapalenie płuc	płuca	9.2	16.0	7.3
rumień skóry	skóra	3	6	5
odwodnienie	skóra	10	20	5
Zapalenie				
tarczyca	tarczyca	40	240	2
niedoczynność				
tarczycy	tarczyca	2	60	1.3

współczynniki oraz dawki progowe dla wybranych organów do wyliczenia ryzyka wczesnych zgonów zgodnie z rekomendacjami International Commission on Radiological Protection

Badań i Rozwoju

OBLICZENIA PÓŹNYCH SKUTKÓW AWARII

Późne skutki zdrowotne powstają na skutek: awarii oblicza się na podstawie:

•napromieniowania organizmów bezpośrednio po awarii.

•w wyniku spożywania skażonej żywności, wody oraz przebywania na skażonym terenie.

Ze względu na brak wielu szczegółowych danych wymaganych do obliczeń późnych skutków zdrowotnych, dłatego też zostały one jedynie obliczone jedynie na podstawie bezpośredniego promieniowania po awarii.

OBLICZENIA PÓŹNYCH SKUTKÓW AWARII

Obliczenia późnych skutków awarii dokonano z wykorzystaniem modelu liniowo-kwadratewy, który zakłada ryzyko wystąpienia skutków zdrowotnych zmienia się liniowo z otrzymaną Dawką w małych zakresach zmian dawek, oraz zmienia się kwadratowo z dawką w przypadku dużych zmian.

$$R(D) = D \cdot CFR \cdot (a + b \cdot USLD) \cdot FP$$

D – dawka
CFR – współczynnik długożyciowego ryzyka wystąpienia zachorowania(I) lub śmierci(D) na nowotwór
a – współczynniki liniowy zależny od dawki
b – współczynnik kwadratowy zależny od dawki
USLD – definiowalny poziom dawki, jeżeli wyższy od D to przyjmuje się USLD = D.

Transportu substancji promieniotwórczej

Obliczenia przeprowadzono dla stałych warunków atmosferycznych (u=3m/s, opady deszczu 50 mm/h, pora dzienna ze średnim nasłonecznieniem, klasa stabilności 3 (C)).

Odległość [km]	Czas od awarii [s]	koncentracja materiani promeniotwórczego w powietrzu na			koncentracja po:	materiału promi ziomie ziemi na l	eniotwórczego v inii wiatru [Bq s/	v powietrzu na /m3]	
		Cs-134	Cs-137	(1,2-7,3	I-131	Cs-134	Cs-137	Sr-90	I-131
0	28080	0	0	- 12 /	0	0	0	0	0
0.25	28142	8.13E+12	3.10E+12	2.81-11	1.70E+13	2.63E+12	1.00E+12	9.09E+10	5.51E+12
0.75	28268	1.71E+12	6.50E+11	5.89E+10	3 57/E+12	1.82E+11	6.94E+10	6.29E+09	3.81E+11
3	28830	1.85E+11	7.03E+10	6.36E+09	3.86E+11	1.89E+11	7.21E+10	6.52E+09	3.96E+11
7.5	29955	3.84E+10	1.46E+10	1.32E+09	8.02E+:''	4 21F.+10	1.60E+10	1.45E+09	8.78E+10
12.5	31205	1.26E+10	4.82E+09	4.33E+08	2.64E+10	1.30E 10	4.94E+09	4.44E+08	2.71E+10
17.5	32455	5.74E+09	2.19E+09	1.96E+08	1.20E+10	5.77E+09	2.205:09	1.97E+08	1.20E+10
25	34330	2.35E+09	8.97E+08	8.02E+07	4.89E+09	2.35E+09	8.97F+08	8.02E+07	4.89E+09
35	36830	7.49E+08	2.85E+08	2.54E+07	1.55E+09	7.49E+08	2.35 ^{,⊑} +08	2 515+07	1.55E+09
45	39330	2.57E+08	9.78E+07	8.68E+06	5.30E+08	2.57E+08	9.78E+07	8.685-06	5.30E+08
	koncentracja materiału promieniotwórczego na ziemi [Bq /m2]				m2]	Skorygowana aktywn کې خ ć dła [۲٫۰۰۰]			
Odległość [km]	Cs-134	Cs-137	Sr-90	I-131	total	Cs-134	Cs-137	Sr-20	I-131
0	0	0	0	0	0	4.27E+17	1.63E+17	1.48E+16	9 155- 17
0.25	2.62E+11	9.99E+10	9.19E+09	5.48E+11	7.36E+12	4.18E+17	1.59E+17	1.44E+16	8.7 J_+17
0.75	1.03E+11	3.91E+10	3.55E+09	2.15E+11	2.86E+12	4.00E+17	1.53E+17	1.38E+16	8.38E+17
3	2.78E+10	1.06E+10	9.69E+08	5.82E+10	7.74E+11	3.35E+17	1.28E+17	1.15E+16	7.00E+17
7.5	8.45E+09	3.22E+09	2.92E+08	1.76E+10	2.34E+11	2.29E+17	8.74E+16	7.88E+15	4.79E+17
12.5	3.52E+09	1.34E+09	1.21E+08	7.35E+09	9.85E+10	1.50E+17	5.70E+16	5.12E+15	3.12E+17
17.5	1.72E+09	6.54E+08	5.90E+07	3.58E+09	4.89E+10	9.76E+16	3.72E+16	3.33E+15	2.03E+17
25	6.82E+08	2.60E+08	2.33E+07	1.42E+09	2.00E+10	5.50E+16	2.09E+16	1.87E+15	1.14E+17
35	2.17E+08	8.27E+07	7.40E+06	4.49E+08	7.09E+09	2.34E+16	8.92E+15	7.95E+14	4.85E+16
45	7.44E+07	2.83E+07	2.53E+06	1.54E+08	2.93E+09	9.98E+15	3.80E+15	3.37E+14	2.06E+16

Obliczenia Dawek

Liczebność populacji, która otrzymała określony rodzaj i wielkość dawki

Rodzaj dawki 🔘	A Narząd	Wielkość (Sv)	liczebność
Dawka skuteczna /natychmiastowa	Czerwony szpik kostny	>1.5	1.6e5
Dawka skuteczna /natychmiastowa	Czerwony szpik kostoy	>2.32	1.14e2
Dawka skuteczna /natychmiastowa	Płuca	>5.0	0.00
Dawka równoważna / 50- cio letnia	Całe ciało	>0.01	4.01e5
Dawka równoważna / 50- cio letnia	Całe ciało	>0.02	2.72e5
Dawka równoważna / 50- cio letnia	Całe ciało	>0.05	1.18e5
Dawka równoważna / 50- cio letnia	Całe ciało	>0.1	5.79e4
Dawka równoważna / 50- cio letnia	Całe ciało	>1	3.11e2
Narodowe Centr Badań i Rozw	ym oju	WUT	

Obliczenia Dawek

Maksymalne dawki w zależności od odległości od miejsca awarii

		QA				
Odległość [km]	Rodzaj dawki/narząd	Wartost (Sv)	Rodzaj dawki/narząd	Wartość (Sv)	Rodzaj dawki/narząd	Wartość (Sv)
0-0.5	ICRP60ED	8.94E+01	skóra	3.32E+02	czerwony szpik kostny	3.36E+01
0.5-1	ICRP60ED	2.08E+01	SK.013	2.30E+01	czerwony szpik kostny	1.26E+01
1-5	ICRP60ED	7.93E+00	skéza	2.37E+01	czerwony szpik kostny	3.48E+00
5-10	ICRP60ED	2.14E+00	skóra	5.23E+00	czerwony szpik kostny	1.04E+00
10-15	ICRP60ED	8.12E-01	skóra 💋	1.60E+00	czerwony szpik kostny	4.27E-01
15-20	ICRP60ED	3.86E-01	skóra	7.05E-01	czerwony szpik kostny	2.07E-01
20-30	ICRP60ED	1.54E-01	skóra	2.855-01	czerwony szpik kostny	8.24E-02
30-40	ICRP60ED	5.01E-02	skóra	3.01E-02	czerwony szpik kostny	2.72E-02
40-50	ICRP60ED	1.81E-02	skóra	3.105-02	czerwony szpik kostny	1.01E-02
0-0.5	płuca	4.65E+01	tarczyca	8.40E+01	żołądek	3.14E+01
0.5-1	płuca	1.43E+01	tarczyca	1.96E+01 🥖	żołądek	1.18E+01
1-5	płuca	4.49E+00	tarczyca	7.44E+00	<u>kołądek</u>	3.25E+00
5-10	płuca	1.28E+00	tarczyca	2.00E+00	żoiądek	9.70E-01
10-15	płuca	5.11E-01	tarczyca	7.57E-01	zoisdek	3.99E-01
15-20	płuca	2.46E-01	tarczyca	3.58E-01	żołąceł	1.94E-01
20-30	płuca	9.80E-02	tarczyca	1.42E-01	żołądek	7.70E-02
30-40	płuca	3.21E-02	tarczyca	4.59E-02	żołądek	2.54E-02
40-50	płuca	1.18E-02	tarczyca	1.64E-02	żołądek 🖉	9.49E-03

Obliczenia Dawek

Całkowita dawka równoważna 50-letnia jaką otrzymają mieszkańcy

S.C.	3			
Rodzaj dawki	Polygans	Wielkość dawki Sv	Populacja	Średnia dawka (Sv)
ICRP60ED	0-15 km	1.74E+03	8470	2.05E-01
ICRP60ED	15-30 km	1.35E+04	155470	8.68E-02
ICRP60ED	30-50 km 🍐	8.53E+03	439610	1.94E-02
ICRP60ED	0-50 km	2.35504	603550	3.94E-02
				20 7 A

Obliczenia wczesnych skutków

Wczesne skutki jakie uzyska ludność w wyniku natychmiastowego napromieniowania w obszarze 0-50 km od elektrowni

	0-15 km	15-30km	30-50km	0-50 km
CONY				
RAZEM	2.11E+00	0.00E+00	0.00E+00	2.11E+00
ZACHOROWAN	10-			
RAZEM	7.55E+02	0.00E+00	0.00E+00	7.55E+02
Wymioty	1.10E+02	0.00E+00	0.00E+00	1.10E+02
Biegunka	5.54E-01	0.00E+00	0.00E+00	5.54E+01
Zapalenie płuc	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Zapalenie tarczycy	0.00E+00	0.€0E+00	0.00E+00	0.00E+00
Niedoczynność tarczycy	4.99E+00	0.0072+00	0.00E+00	4.99E+00
Rumień (skóry)	3.69E+02	0.00E+00	0.00E+00	3.69E+02
Obrażenia przeznaskórkowe	2.16E+02	0.00E+00	0.00E00	2.16E+02
			$\mathbb{V}(0)$	7

Obliczenia późnych skutków

Późne skutki jakie uzyska ludność w wyniku natychmiastowego napromieniowania w obszarze 0-50 km od elektrowni

Nowotwory 4//	0-15 km	15-30km	30-50km	0-50 km
ŹĠŐŇŎ				
RAZEM	2.47E+02	1.54E+03	4.76E+02	2.26E+03
Białaczka	3.74E+00	4.68E+01	2.27E+01	7.82E+01
Kości	9.818-01	6.02E+00	2.64E+00	9.64E+00
Piersi	7.74E+00	4.34E+01	2.61E+01	7.72E+01
Płuc	1.64E+02	1.08E+03	2.56E+02	1.50E+03
Tarczycy	1.76E+00	1.11E+01	4.30E+00	1.72E+01
Okrężnicy	1.16E+01	6.01E+01	2.97E+01	1.01E+02
Wątroby	8.55E-01	5.23E+00	2.848+00	8.93E+00
Trzustki	3.49E+00	2.08E+01	1.05E -01	3.48E+01
Żołądka	3.76E+00	2.23E+01	1.21E+01	3.82E+01
Inne	4.44E+01	2.41E+02	1.09E+02	3.94E+02
ZACHOROWANIA				
RAZEM	3.44E+01	2.07E+02	9.74E+01	3.39E∻02
Piersi	1.43E+01	8.02E+01	4.83E+01	1.43E+02
Tarczycy	2.01E+01	1.27E+02	4.91E+01	1.96E+02

Obliczenia Dawek

Liczebność populacji, która otrzymała określony rodzaj i wielkość dawki

Rodzaj dawki	Narząd	Wielkość (Sv)	liczebność
Dawka skuteczna /natychmiastowa	Czerwony szpik kostny	>1.5	0.00
Dawka skuteczna /natychmiastowa	Płuca	>5.0	0.00
Dawka równoważna / 50-cio letnia	Całe ciało	>0.01	5.05E+05
Dawka równoważna / 50-cio letnia	Całe ciało	>0.02	1.01E+04
Dawka równoważna / 50-cio letnia	Całe ciało	>0.05	6.86E+01
Dawka równoważna / 50-cio letnia	Całe ciało	>0.1	0
			SO _{7an}

Obliczenia Dawek

Maksymalne dawki w zależności od odległości od miejsca awarii

Odległość [km]	Rodzaj dawki/narząd	Wartose (Str)	Rodzaj dawki/narząd	Wartość (Sv)	Rodzaj dawki/narząd	Wartość (Sv)
0-0.5	L-ICRP60ED	6.16E-01	skóra	4.04E-04	Czerwony szpik kostny	5.00E-01
0.5-1	L-ICRP60ED	2.35E-01	s'k's a	1.64E-05	Czerwony szpik kostny	1.89E-01
1-5	L-ICRP60ED	6.39E-02	chóra	4.44E-03	Czerwony szpik kostny	5.18E-02
5-10	L-ICRP60ED	2.45E-02	skóra	6.34E-03	Czerwony szpik kostny	2.00E-02
10-15	L-ICRP60ED	4.26E-02	skóra 🔧 🖊	7.46E-03	Czerwony szpik kostny	3.45E-02
15-20	L-ICRP60ED	2.74E-02	skóra	1.95E-03	Czerwony szpik kostny	2.22E-02
20-30	L-ICRP60ED	1.50E-02	skóra	2.755-03	Czerwony szpik kostny	1.22E-02
30-40	L-ICRP60ED	8.95E-03	skóra	1.572-03	Czerwony szpik kostny	7.30E-03
40-50	L-ICRP60ED	5.74E-03	skóra	9.75E-04	Czerwony szpik kostny	4.69E-03
0-0.5	płuca	4.89E-01	tarczyca	4.72E-01	Żołądek	4.65E-01
0.5-1	płuca	1.84E-01	tarczyca	1.77E-01 🥢 💭	Żołądek	1.76E-01
1-5	płuca	5.07E-02	tarczyca	4.91E-02	Żołądek	4.82E-02
5-10	płuca	1.97E-02	tarczyca	1.94E-02	Żułącek	1.87E-02
10-15	płuca	3.41E-02	tarczyca	3.47E-02	Zoiąćek	3.22E-02
15-20	płuca	2.20E-02	tarczyca	2.21E-02	Zutadek.	2.08E-02
20-30	płuca	1.21E-02	tarczyca	1.21E-02	Żołądek	1.15E-02
30-40	płuca	7.24E-03	tarczyca	7.14E-03	Żołądek 🤍 🚫	6.83E-03
40-50	płuca	4.66E-03	tarczyca	4.58E-03	Żołądek 🥟	4.40E-03

Obliczenia Dawek

Całkowita dawka równoważna 50-letnia jaką otrzymają mieszkańcy

Rodzaj dawki	ystans	Wielkość dawki Sv	populacja	Średnia dawka (Sv)
ICRP60ED	0-15 km	3.60E+01	8470	4.25E-03
ICRP60ED	15-30 Km	1.15E+03	155470	7.40E-03
ICRP60ED	30-50 km	1.70E+03	439610	3.87E-03
ICRP60ED	0-50 km	2.895+03	603550	4.78E-03
			272	20 7 A

Obliczenia wczesnych skutków

Wczesne skutki jakie uzyska ludność w wyniku natychmiastowego napromieniowania w obszarze 0-50 km od elektrowni

	0-15 km	15-30km	<u>30-50km</u>	0-50 km
ZGORD				
Łącznie	0.00E+00	0.00E+00	0.00E+00	0.00E+00
ZACHOROWANIA	4 CAR			
Wymioty	0.002+00	0.00E+00	0.00E+00	0.00E+00
Biegunka	0.00E+C/J	0.00E+00	0.00E+00	0.00E+00
Zapalenie płuc	0.00E+00 (0.00E+00	0.00E+00	0.00E+00
Zapalenie tarczycy	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Niedoczynność tarczycy	0.00E+00	0.00E+00	0.00E+00	0.00E+00
Rumień	0.00E+00	0.00E+0C	0.00E+00	0.00E+00
Obrażenia przeznaskórkowe	0.00E+00	0.00E+00	0.00E+00	0.00E+00

507A

Obliczenia późnych skutków

Późne skutki jakie uzyska ludność w wyniku natychmiastowego napromieniowania w obszarze 0-50 km od elektrowni

Nowotwory 4////	0-15 km	15-30km	30-50km	0-50 km
ZGONX				
Razem *	1.30E+00	4.15E+01	6.07E+01	1.04E+02
Białaczka	1.23E-01	3.94E+00	5.81E+00	9.87E+00
Kości	9.02E-03	2.99E-01	4.53E-01	7.61E-01
Piersi	1.52E-01	4.94E+00	7.38E+00	1.25E+01
Płuc	2.99E-01	9.47E+90	1.34E+01	2.32E+01
Tarczycy	1.06E-02	3.35E-01	4.72E-01	8.18E-01
Okrężnicy	1.32E-01	4.23E-00	6.20E+00	1.06E+01
Wątroby	1.40E-02	4.50E-01	6.63E-01	1.13E+00
Trzustki	4.42E-02	1.42E+00	2.09E+00	3.55E+00
Żołądka	5.39E-02	1.72E+00	2.52E+00	- <u>4</u> 29E+00
Inne	4.59E-01	1.47E+01	2.17E+0	3.69E+01
ZACHOROWANIA				
Całkowite	4.02E-01	1.30E+01	1.90E+01	3.245+01
Piersi	2.81E-01	9.12E+00	1.36E+01	2.30E+01
Tarczycy	1.21E-01	3.83E+00	5.39E+00	9.34E+00

Obliczenia wiełkości terenu, na którym przekraczane są dawki progowe.

Dawka prog@@acmSv]	Wariant 504 Obszar [ha]	Wariant 802a Obszar[ha]
	4650	10400
2 *////	4160	8450
5	3070	5340
10	781	4650
20	////2.98	3940
50	23	2140
100	2	876
200	5	876
500	5	438
1 000	0	192
2 000	0	52
10 000	0	50
20 000	0	(3/=1

Kolorem niebieskim zaznaczono dawkę1 mSv dopuszczalną dla ludności w normalnych warunkach. Kolorem czerwonym dawkę 20 mSv wyznaczającą zakres ewakuacji w Fukushimie.

W przypadku wariantu Wariant 802a którego prawdopodobieństwo zaistnienia wynesi 3,70E-09 na reaktor na rok, należy spodziewać się ok. 2.11 zgonów natychmiastowych oraz ok. 2260 zgonów wywołanych chorobami nowotworowymi w okresie 50 lat.

W przypadku wariantu Wariant 504 którego prawdopodobieństwo zaistnienia wynosi 1.28E-07 na reaktor na rok, należy spodziewać się ok. 104 zgonów wywołanych chorobarni nowotworowymi w okresie 50 lat.

Czy to dużo ?

ROTA

Tabela 2.3a. Umieralność MĘŻCZYZN według głównych przyczyn w wybranych latach 1980-2010 Table. 2.3a. Deaths of MALES by main groups of causes in selected years 1980-2010

Przyczyna zgonu (ICD- 10) / Causes of deaths	1980	1991		2800	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Standaryzow	ane ws	półczy	noiki z	gonów	DH 185.	tys. m	ężczyz	n / Age	-adjus	led dea	th rates	s per H	000 00	men
Nowotwory zł. (C00-C97)	259,6	296,9	297,7	300	302,4	307	301,1	302,8	296	293,6	290,8	284,3	279,9	271,1

Tabela 2.3b. Umieralność KOBIET według głównych przyczyn w wybranych latach 1980-2010Table 2.3bDeaths of FEMALES by main groups of causes in selected years 1980-2010

Przyczyna zgonu (ICD- 10) / Causes of deaths	1980	1991	1996	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010
Standaryzov	vane w:	spółczy	nniki z	gonów	na 10) tys. k	obiet /.	Age-ac	ljusted	death r	ates pe	r 100 (900 wai	men
Nowotwory zł. (C00-C97)	149,8	155,2	155,7	158,6	158	156,6	157,7	155	155,5	154,9	154,5	152,1		146,9

SYTUACJA ZDROWOTNA LUDNOŚCI POLSKI I JEJ UWARUNKOWANIA Pod redakcją Bogdana Wojtyniaka, Pawła Goryńskiego, i Bożeny Moskalewicz Narodowy Instytut Zdrowia Publicznego -Państwowy Zakład Higieny

Warszawa 2012

WNIOSKI

Kod obliczeniowy MACCS2/WinMACCS jest przydatnym narzędziem umożliwiającym ocenę potencjalnych skutków awarii elektrowni jądrowej związanej z uwolniemem substancji promieniotwórczych do atmosfery.

Poszczególne moduły kodu pozwalają na obliczenie transportu substancji promieniotwórzcych (z uwzględnieniem osadzania oraz samorzutnych rozpadów), a także narażenia ludności, zarówno z powodu bezpośredniego narażenia na promieniowanie, jak i przebywania na terenie skażonym w dłuższym terminie. Bardziej zaawansowane moduły pozwalają także na obliczanie długoterminowych skutków ekonomicznych a także badanie możliwości minimalizacji negatywncyh skutków zdrowotnych przy pomocy odpowiednio zaplanowanej ewakuacji.

Kod ma także pewne ograniczenia, wynikające z fudnamentalnych założeń.

Nie jest uwzględniona neźba terenu, co czyni kod mało użytecznym w rejonach górzystych oraz silnie zurbanizowanych. Wpływ tego zagadnienia na analizę potencjalnych polskich elektrowni jądrowych jest niewielki ze względu na charakterystykę geograficzną rejonu.

Długoterminowy wpływ dawek promieniowania oparty jest o hipotezę liniową bezprogową, której prawdziwość nie została dowiedziona; co więcej istnieją przesłanki o jej niepoprawnośći dla małych dawek. Prowadzi to do wyników, które należy uznać za pesymistyczną ocenę wpływu awarii na ludność.

WNIOSKI

Oczywiste jest także, że dokładność prognoz uzyskanych z wykorzystaniem kodu MACCS uzależniona jest wprost od dokładności danych wejściowych, w tym w szczególności:

•danych dotyczących uwoścień w przypadku potencjalnej awarii,

danych meteorologicznych.

danych społecznych

W dalszej perspektywie czasowej zespół badawczy Instytutu Techniki Cieplnej Politechniki Warszawskiej planuje dalszą rozbudowę modeli obliczeniowych przygotowanych w środowisku MACCS, z uwzględnieniem danych dotyczących przebiegu awarii uzyskanych w toku realizacji zadania badawczego SARWUT. Zasadne może być także podjęcie wspólnych badań tego zagadnienia we współpracy ze specjalistami z zakresu rozchodzenia się skażeń oraz klimatu i geografii.

Dziękuję za wagę

2 20 7 A